
2020-11-01

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dielt, Ph.D.

© 2020 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Namespaces and
std::cout and
std::ostream

2
Member functions

Outline

• In this lesson, we will:

– Describe the namespace keyword

– Look at the std namespace

– Discuss some of the reasons for using namespaces

– Describe std::cout and its class std::ostream

– Look at how std::endl is implemented

3
Member functions

Namespaces

• Up to this point, we have the std namespace,

– We have seen it with:

• Types std::size_t

• Class names std::string

• Function names std::sin

• Objects std::cout

• Now we will discuss namespaces and how they are defined

4
Member functions

Namespaces

• Suppose you want to author another sine function,

but you don’t want people calling it unless they really want to
namespace ca_uwaterloo_dwharder {

double sin(double x);

double sin(double x) {

if (x < 0) {

return -sin(-x);

} else if (x <= M_PI_2) {

return ((

(1.0 - 4.0*M_1_PI)*M_1_PI*x + (3.0*M_1_PI - 1.0)

)*4.0*M_1_PI*x + 1.0)*x;

} else if (x <= M_PI) {

return sin(M_PI_2 - x);

} else if (x <= 2.0*M_PI) {

return -sin(x – M_PI);

} else {

return sin(x - 2.0*M_PI);

}

}

}

1 2

3 4

2020-11-01

2

5
Member functions

Namespaces

• Inside your program, you would call this program as follows:

int main();

int main() {

double x{};

std::cout << "Enter a number: ";

std::cin >> x;

std::cout << "sin(" << x << ") = " << std::sin(x) << std::endl;

std::cout << "sin(" << x << ") is approximately "

<< ca_uwaterloo_dwharder::sin(x) << std::endl;

return 0;

}

6
Member functions

Namespaces

• More-or-less everything in the standard library is in the std
namespace

– For example,

std::cout

std::endl

std::string

std::size_t

std::sin

std::cos

– There are a few seldom exceptions when macros are brought over from

the older C libraries:

assert(…)

M_PI

7
Member functions

Namespaces

• Currently, the standard library does not contain a secant function

– You could author one:

double sec(double x) {

return 1.0/std::cos(x);

}

• Currently, the standard library does not contain a secant function

– Suppose there was no std namespace

– Suppose that in a future version of the standard library,
a sec function is added to the cmath library

– This would either:

• Break your code

– The compiler indicating there are two definitions of sec

• It will carefully inspect both, and call the one you didn’t mean

8
Member functions

Namespaces

• Warning: nothing keeps you from adding additional global
variables, functions and classes the std namespace

– Nothing, except of course, in the words of John von Neumann, that
you would be “in a state of sin”

– You’d probably not gain significant respect amongst your colleagues,
either…

5 6

7 8

2020-11-01

3

9
Member functions

Namespaces

• Namespaces ensure that changes in one namespace never effect
anything in other namespaces

– For example, a company may have a global namespace
namespace com_cyberdyne {

// Company-wide classes and functions...

}

– A project within Cyberdyne could have a namespace within this
namespace, or its own namespace

namespace com_cyberdyne {

namespace skynet {

// Skynet-specific classes and functions...

}

// Company-wide classes and functions...

}

namespace com_cyberdyne_skynet {

// Skynet-specific classes and functions...

}

com_cyberdyne::f(…)

com_cyberdyne::skynet::f(…)

com_cyberdyne_skynet::f(…)

10
Member functions

cout and clog

• The first object we saw in this course was:

namespace std {

// Global variable declaration

ostream cout;

ostream clog;

}

• Another object in the iostream library is clog:

int main() {

std::cout << "This is printed to the console"

<< std::endl;

std::clog << "This can be redirected to a log file"

<< std::endl;

return 0;

}

11
Member functions

std::endl

• The next identifier from the standard library is std::endl

– This is actually a function:

namespace std {

// Function declaration

ostream &endl(ostream &out);

}

– It takes an ostream object as an argument by reference,

and returns (presumably the same object) by reference

• When std::cout sees a right-hand operand that is std::endl,

it actually calls std::endl(std::cout)

12
Member functions

std::endl

• You can author a function like this:

std::ostream &bob(std::ostream &out);

std::ostream &bob(std::ostream &out) {

out << "Bob!!!";

return out;

}

• You can then use this function:

int main() {

std::cout << bob << std::endl;

return 0;

}
Output:

Bob!!!

9 10

11 12

2020-11-01

4

13
Member functions

std::endl

• This would be weird, but it works:

int main() {

std::endl(std::cout);

return 0;

}

14
Member functions

Summary

• Following this lesson, you now

– Understand the namespace keyword

– Have an idea of how the std namespace is implemented and the
purpose of prefixing such functions with std::

– Know how to define your own namespace

– Have a better understanding of std::cout and std::endl

15
Member functions

References

[1] No references?

16
Member functions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and

accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

13 14

15 16

2020-11-01

5

17
Member functions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The

material in it reflects the authors’ best judgment in light of the

information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the

responsibility of such parties. The authors accept no responsibility for

damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for

which it was intended.

17

